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Abstract

In this article we provide a conceptual framework in which to think of the relationships
between the three�dimensional structure of the physical space and the geometric properties of
a set of cameras which provide pictures from which measurements can be made� We usually
think of the physical space as being embedded in a three�dimensional euclidean space where
measurements of lengths and angles do make sense� It turns out that for arti�cial systems� such
as robots� this is not a mandatory viewpoint and that it is sometimes su�cient to think of the
physical space as being embedded in an a�ne or even projective space� The question then arises
of how to relate these models to image measurements and to geometric properties of sets of
cameras� We show that in the case of two cameras� a stereo rig� the projective structure of the
world can be recovered as soon as the epipolar geometry of the stereo rig is known and that
this geometry is summarized by a single �� � matrix� which we called the fundamental matrix
��� 	
� The a�ne structure can then be recovered if we add to this information a projective
transformation between the two images which is induced by the plane at in�nity� Finally� the
euclidean structure �up to a similitude� can be recovered if we add to these two elements the
knowledge of two conics �one for each camera� which are the images of the absolute conic� a circle
of radius

p
�� in the plane at in�nity� In all three cases we show how the three�dimensional

information can be recovered directly from the images without explicitely reconstructing the
scene structure� This de�nes a natural hierarchy of geometric structures� a set of three strata�
that we overlay on the physical world and which we show to be recoverable by simple procedures
relying on two items� the physical space itself together with possibly� but not necessarily� some
a priori information about it� and some voluntary motions of the set of cameras�
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� Introduction

This article discusses several ways of representing the geometry of three�dimensional space� which
we will call the world� when viewed by a system of cameras� We usually think of the world as being

euclidean� i�e� of being a place where it makes sense to measure angles and distances� When we
look at this space with a system of cameras� we �rst make measurements in the images and then�
attempt to relate them to three�dimensional quantities� This has been� and still is� one of the main

research topics in computer vision in such areas as motion analysis� stereo� and camera calibration�
All computer vision scientists know that going from image quantities to reliable three�dimensional
metric quantities is very di�cult� basically because a camera is not a metric device� unless it has
been carefully calibrated� which is itself a very di�cult task� We will see later in the paper that a

camera is really a projective device� hence� part of the di�culty�
There are two very important ideas that have emerged in the recent years and which are related

to this problematic� The �rst idea is that it is not always necessary� in order to perform tasks in
the world� to use metric measurements and that less detailed measures such as� for example� ratios

of lengths� may quite often be su�cient to achieve these tasks� This is also an active research area
in robotics and vision� The second idea is that calibration in the usual sense i�e� by using special
calibration grids can be entirely avoided by using active camera motions and exploiting the fact

that the world can be modelled as euclidean�

In this paper I want to articulate these two ideas with the idea that we can de�ne on the
three�dimensional space that we call the world not only the structure of an euclidean metric space
that we are used to� but also weaker �hence more general� structures� e�g� a�ne and projective�

These structures can be thought of geometric strata which are overlaid one after each other upon

the world� First� the projective stratum which can be specialized next into an a�ne stratum
which can itself be specialized further into an euclidean stratum� If we are used to thinking about
projective� a�ne� and euclidean spaces� it is rarely the case that we think of these three structures

simultaneously� But I think that in order to really understand the relationship between the world
and its images we must be able to picture in our minds those three structures overlaid upon each
other�

Closely related to this strati�cation idea is the idea of group of geometric transformations acting

on the elements of these strata and leaving invariant some properties of geometric con�gurations
of these elements� Attached to the projective stratum is the group of projective transformations
or collineations� attached to the a�ne stratum is the group of a�ne transformations� and attached

to the metric stratum is the group of rigid transformations or displacements� In fact� because
we rarely have an absolute yardstick for measuring distances� we are in practice interested in a
subgroup of the group of displacements� the group of similitudes� otherwise known as euclidean

transformations� Interestingly enough� this group appears very naturally when we build the series

of strata�
It is well�known but remarkable enough to be stressed here that these four groups can be

considered as subgroups of each other� e�g� the group of a�ne transformations can be considered

as a subgroup of the group of collineations and the group of similitudes as a subgroup of the group
of a�ne transformations� These relationships will be made clearer in the paper�

This notion of groups brings in naturally another notion which is central to this paper� i�e� the
notion of invariant� In our context� an invariant is a property of a geometric con�guration which

does not change when a transformation of a given group is applied to that geometric con�guration�
For a given geometric con�guration� e�g� a set of points� lines� surfaces� there may exist projective
invariants which are properties of the con�guration which do not change when we apply a projec�

	



tive transformation to the elements of the con�guration� These invariants are also be a�ne and
similitude invariants of the same con�guration� From the practical standpoint� this means that if
can measure invariant properties of the world within the projective stratum �the most general��

then these properties will remain invariant in the next strata� i�e� a�ne and euclidean�
We do not present in this paper any experimental results� This is not to say that we are not

interested in the actual implementation of the ideas that I will present� In fact� many of these ideas

or consequences of them have been implemented� sometimes on special purpose hardware� and we
refer the interested reader to the corresponding publications 
	� �� �� �� 
� ��� The purpose of this
paper is to provide a coherent framework in which to express these ideas in a somewhat systematic
and formal� perhaps even elegant� way� We hope that the reader will accept to step back a little

and take a fresh look at a number of old problems� This may provide opportunities for solving
more e�ciently some newer problems�

� Related work

Koenderink and van Doorn have started the interest of the computer vision community in non
metric reconstructions from sets of cameras with their pioneering work on a�ne structure from

motion 
���

Gunnar Sparr has developed a theory based on a novel de�nition of shape 
�� �� and showed that
this theory could also be used to compute a�ne and projective reconstructions of the world from
point correspondences� Contrarily to us� he does not rely on epipolar geometry to obtain these

reconstructions� The cost he has to pay is a somewhat more complicated theory than ours and a

more di�cult combinatorial problem of obtaining the point correspondences since he cannot rely
on the epipolar constraint 
��� ��� �	��

Roger Mohr and coworkers 
��� have used some ideas from projective geometry to perform
reconstruction of the world from a number of point correspondences� However� neither do their
clearly distinguish between the three main classes of reconstructions nor do they abstract them
from the relevant camera geometry�

Richard Hartley and coworkers 
��� have developed simultaneously and independently of 
�
�
a method to compute a projective reconstruction of the world from point correspondences� The
second paper also included a preliminary discussion of the a�ne reconstruction case�

More recently� Amnon Shashua 
��� ��� ��� has developed a set of similar ideas which di�er

slightly from those expressed in 
�
� ��� by the fact that� through the use of an extra plane of
reference� he introduces a special projective invariant which allows him to elegantly predict the
position of image points in other views �for a related approach� see 
����� No attempt has been

made in this work to relate the three types of possible reconstruction�

The ideas developed in the present paper are closely related to those expressed by Luong and
Vi�ville 
	�� who also looked at the problem of representing systems of cameras in the framework
of projective� a�ne and euclidean geometries� Their main emphasis was on the characterization of

invariant representations for the perspective projection operation performed by the cameras while
we are interested here in obtaining invariant representations of the ��D scene� in determining how
the minimum information about the camera geometry� necessary to estimate such representations
can be obtained from the images� and how the ��D representations themselves can be obtained

from the images without actually performing an explicit ��D reconstruction�

�



� Strati�cation of ��D space� projective� a�ne and euclidean

structures

��� Notations

We represent vectors and matrices in boldface� i�e� vector x is noted x� Since a great deal of

our discussion deals with geometric entities which can sometime be represented by vectors or
matrices we sometimes di�erentiate between the geometric entity itself� e�g� a point x and its
vector representation x�

��� ��D space as a projective space

We will �rst consider that the world is embedded in a projective space of dimension three noted
P�� Similarly� we will consider the retinal plane of a camera as embedded in a projective space of
dimension two noted P�� Since we will also have to consider projective spaces of dimension one� we

begin with a brief pedestrian introduction to general projective spaces of any dimension and then
specialize to the cases where this dimension equals one� two� or three�

����� General projective spaces

The use of projective spaces has been made popular in three�dimensional computer graphics and

robotics from the early days because they allowed a very compact representation of all changes
of coordinate systems as four by four matrixes instead of a rotation matrix and a translation
vector� This is because such changes are special cases of linear projective transformations called

collineations� Let us look at general projective spaces in more detail�

An n�dimensional projective space� Pn �in this article we will use only the cases n � �� �� ��
can be thought of as arising from an n � � dimensional vector space �real or complex� in which
we de�ne the following relation between non zero vectors� To help guide the reader�s intuition� it

is useful to think of a non zero vector as de�ning a line through the origin� We say that two such
vectors x and y are equivalent if and only if they de�ne the same line� Mathematically� this can be
stated as the fact that there exists a non zero scalar � such that

y � �x

It is easily veri�ed that this de�nes an equivalence relation on the vector space minus the zero
vector� The equivalence class of a vector is the set of all non zero vectors which are parallel to it
�it can be thought of as the line de�ned by this vector�� The set of all equivalence classes is the

projective space Pn� A point in that space is called a projective point and is an equivalence class

of vectors and can therefore be represented by any vector in the class� If x is such a vector� then
�x� � �� � is also in the class and represents the same projective point� The coordinates of any
vector in the equivalence class are the coordinates of the corresponding projective point� They are
therefore not all equal to zero �we have excluded the zero vector from the beginning� and de�ned

up to a scale factor� It is sometimes useful to di�ereintiate between the projective point noted x

and one of its coordinate vectors noted x�
What do we have so far� a projective point in Pn is represented by an n���vector of coordinates

x � �x�� � � � xn���
T � where at least one of the xi is non�zero� The numbers xi are sometimes called

the homogeneous or projective coordinates of the point� and the vector x is called a coordinate

vector�
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Two n���vectors �x�� � � � xn���
T and �y�� � � � yn���

T represent the same point if and only if there
exists a non�zero scalar � such that xi � �yi for � � i � n � �� Therefore� the correspondence
between points and coordinate vectors is not one�to�one and this makes the application of linear

algebra to projective geometry a little more complicated�

Collineations We now look at the linear transformations of a projective space� An 	n��
�	n��

matrix A such that det	A
 is di�erent from � de�nes a linear transformation or collineation from
Pn into itself� It is easy to see that the set of collineations is a group for the usual operation of
matrix multiplication� This group is also known as the projective group The matrix associated with

a given collineation is de�ned up to a nonzero scale factor� which we usually denote by�

�y � Ax and also x � y

Quite often we will omit for simplicity the factor � and write simply y � Ax� The reader must
remember that this is a projective equality� equivalent to the equality of n ratios�

Projective basis Another important notion is that of a projective basis� This is the extension
to projective spaces of the idea of coordinate system� A projective basis is a set of n � � points
of Pn such that no n � � of them are linearly dependent� A set of projective points are linearly

independent if� considering any set of coordinate vectors of these points� these vectors are linearly
independent� It is readily veri�ed that this is independent of the choice of the coordinate vectors
and of the choice of basis vectors� For example� the set ei � ��� � � � � �� � � � � ��T � i � �� � � � � n � ��

where � is in the ith position� and en�� � ��� �� � � � � ��T � is a projective basis� called the standard

projective basis� A projective point of Pn represented by any of its coordiante vectors x can be
described as a linear combination of any n� � points of the standard basis� For example�

x �
n��X
i��

xiei

We will use several time in the sequel the following result� borrowed from� for example� 
	�� and

the proof of which can be found in 
�
��

Proposition � Let x�� � � � � xn�� be n�� coordinate vectors of points in Pn� no n�� of which are

linearly dependent� i�e�� a projective basis� If e�� � � � � en��� en�� is the standard projective basis�

there exist nonsingular matrices A such that Aei � �ixi� i � �� � � � � n��� where the �i are non�zero
scalars� any two matrices with this property di�er at most by a scalar factor�

This proposition tells us that any projective basis can be transformed� via a collineation into the
standard projective basis�

Change of projective basis Let us consider two sets of n�� points represented by the coordinate
vectors x�� � � � � xn�� and y�� � � � � yn��� It can be proved that if the points in these two sets are in

general position� there exists a unique collineation that maps the �rst set of points onto the second�

Proposition � If x�� � � � � xn�� and y�� � � � � yn�� are two sets of n�� coordinate vectors such that

in either set no n�� vectors are linearly dependent� i�e�� form two projective basis� then there exists

a non�singular 	n� �
� 	n� �
 matrix P such that Pxi � �iyi� i � �� � � � � n� �� where the �i are
scalars� and the matrix P is uniquely determined apart from a scalar factor�

This proposition shows that a collineation is de�ned by n � � pairs of corresponding points� The
proof can be found for example in 
		��






����� Projective lines� planes and spaces

We illustrate these general notions on three examples which will be used in the rest of the paper�

The projective line The space P� is known as the projective line� It is the simplest of all

projective spaces� which is the �rst reason why we start with it� The second reason is that many
structures embedded in higher dimensional projective spaces have the same structure as P��

The standard projective basis of the projective line is e� � ��� ��T � e� � ��� ��T � and e� � ��� ��T �
A point on the line can be written as

x � x�e� � x�e� ���

with x� and x� not both equal to �� Let us consider a subset of P� of the points such that x� �� ��
This is the same as excluding the point represented by e�� Now since the homogeneous coordinates
are de�ned up to a scalar� these points are described by a parameter �� �� � � � �� so that

x � �e� � e�

where � � x�
x�
� The parameter � is often called the projective parameter of the point� Note that

the point represented by e� has projective parameter equal to ��
We now de�ne the very important concept of the cross�ratio� which is a quantity that remains

invariant under the group of collineations� Let a� b� c� d be four points of P� with their respective

projective parameters �a� �b� �c� �d� Then the cross�ratio fa� b� c� dg is de�ned to be

fa� b� c� dg �
�a � �c

�a � �d
�
�b � �c

�b � �d
�	�

The signi�cance of the cross�ratio is that it is invariant under collineations of P�� In particular�
fa� b� c� dg is independent of the choice of coordinates in P�� Note that the collineations of P� are

usually called homographies�

The projective plane The space P� is known as the projective plane� A point in P� is de�ned
by three numbers� not all zero� 	x�� x�� x�
� They form a coordinate vector x de�ned up to a scale
factor� In P�� there are objects other than points� such as lines� A line is also de�ned by a triplet
of numbers 	u�� u�� u�
� not all zero� They form a coordinate vector u de�ned up to a scale factor�

The equation of the line is
�X

i��

uixi � � ���

Formally� there is no di�erence between points and lines in P�� This is known as the principle

of duality� A point represented by x can be thought of as the set lines through it� These lines
are represented by the coordinate vectors u satisfying uTx � �� This is sometimes referred to as

the line equation of the point� Inversely� a line represented by u can be thought of as the set of
points represented by x and satisfying the same equation� called the point equation of the line�
The principle of duality is a statement about theorems� given a theorem about points and lines�
interchange the roles of the points and lines� and adjust the wording accordingly then the new

statement will also be true�
Let us now generalize the notion of cross�ratio� introduced in the previous section for four points

of P�� to four lines of P� intersecting at a point� Given four lines l�� l�� l�� l� of P� that intersect
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at a point� their cross�ratio fl�� l�� l�� l�g is de�ned as the cross�ratio fP�� P��P�� P�g of their four
points of intersection with any line l not going through their point of intersection� This value is of
course independent of the choice of l�

There is a structure of the projective plane that has numerous applications� especially in stereo
and motion� The name of this structure is the pencil of lines� It is the set of lines in P� passing
through a �xed point� This is a one�dimensional projective space known as a pencil of lines� Let us

consider two lines l� and l� of the pencil represented by their coordinate vectors u� and u�� Any
line l of the pencil goes through the point of intersection of l� and l� represented by u��u�� Thus�
its coordinate vector u satis�es uT 	u� � u�
 � �� or equivalently

u � �u� � �u�

for two scalars � and �� This equation is formally equivalent to equation ���� and therefore the
structure of a pencil of lines is the same as that of the projective line P��

Another� perhaps more elegant� way of proving this result is to apply the principle of duality�
the set of lines going through a point is the dual of the set of points on a line� i�e�� a projective line�

Collineations of P� are de�ned by ��� invertible matrices� de�ned up to a scalar factor� Accord�
ing to proposition �� such a collineation is de�ned by � pairs of corresponding points� Collineations
transform points� lines� and pencils of lines into points� lines� and pencils of lines� and preserve

cross�ratios�
In the projective plane� the class of conic curves is especially important for reasons which will

become apparent in sections ��� and �� We give some simple properties of conics that will be used
in later sections� A conic � is a curve de�ned by the locus of points of the projective plane that

satisfy the equation

S	x
 �
�X

i�j��

aijxixj � �

where the scalars aij satisfy aij � aji for all i� j and hence form a �� � symmetric matrix A� We
can rewrite this equation in matrix form as

S	x
 � xTAx � �

A is de�ned up to a scale factor and thus the conic depends on �ve independent parameters� We

consider only in the following non�singular conics for which matrix A is invertible�
Let y and z be two points of the plane represented by y and z� respectively� A variable point

on the line hy� zi with projective parameter 	 is represented by y � 	z� and this point lies on the

conic � if and only if

S	y � 	z
 � �

By expanding this and grouping terms of similar degrees in 	 we have

S	y
 � �	S	y� z
 � 	�S	z
 � � ���

where

S	y� z
 � yTAz � S	z� y


This means that� in general� there are two points of intersection of the line hy� zi with the conic
�� These intersection points can be real or complex and are obtained by solving the quadratic
equation ���� The two points are the same if and only if the following relation holds

S	y� z
� � S	y
S	z
 � �

�



If we consider that the point y is �xed� this equation is quadratic in the coordinates of z� it is the
equation of the two tangents from y to �� Specializing further� if y belongs to �� S	y
 � � and the
equation of the tangents becomes

S	y� z
 � �

which is linear in the coordinates of z� there is only one tangent to the conic at a point of the conic�
note that this tangent l is represented by the vector l � Ay� We see that when y varies along the
conic� it satis�es the equation yTAy � � and thus the tangent l satis�es the equation lTA�T l � ��

This shows that the tangents to a conic � de�ned by the matrix A �which we assume to be of rank
�� can be thought of belonging to a conic �� in the dual plane de�ned by a matrix proportional to
A�T � This conic is called the dual conic of the conic �� Let B be the matrix of cofactors of matrix

A� Since A�� � �
det�A�B

T � we conclude that we can use B for representing �� instead of A�T �
Related to these ideas are those of poles and polars which we will use in section ����	� Given

a point x represented by the vector x� the polar of x with respect to the conic � de�ned by the
matrixA is the line represented by the vector Ax� Therefore� the relation S	x� y
 � � is equivalent

to saying that the point y is on the polar of the point x and vice versa� Given a line l represented
by l� the pole of l with respect to the conic � is the point x whose polar is l� Assuming that the
matrix A is of rank �� this point is therefore represented by the vector A��l�

The projective space The space P� is known as the projective space� A point x in P� is de�ned
by four numbers� 	x�� x�� x�� x�
� not all zero� They form a coordinate vector x de�ned up to a
scale factor� In P�� there are objects other than just points and lines� such as planes� A plane is

also de�ned as a four�tuple of numbers 	u�� u�� u�� u�
� not all zero� which form a coordinate vector
u de�ned up to a scale factor� The equation of this plane is then

�X
i��

uixi � � �
�

This shows that the same principle of duality that exists in P� between points and lines exists
in P� between points and planes� A point represented by x can be thought of as the set of planes
through it� These planes are represented by u satisfying uTx � �� which is called the plane equation

of the point� Inversely� a plane represented by u can be thought of as the set of points represented
by x and satisfying the same equation� called the point equation of the plane�

Let us generalize the notion of cross�ratio introduced for four points of P� and four lines of P�

intersecting at a point� to four planes of P� intersecting at a line� Given four planes 
�� 
�� 
�� 
�
of P� that intersect at a line l� their cross�ratio f
�� 
��
�� 
�g is de�ned as the cross�ratio

fl�� l�� l�� l�g of their four lines of intersection with any plane 
 not going through l� This is
of course independent of the choice of 
� The cross�ratio can also be de�ned as the cross�ratio of

the four points of intersection of any line� not lying in any of the four planes� with the four planes�
This is also independent of the choice of the line�

The structure that is analogous to the pencils of lines of P� is the pencil of planes� the set of all

the planes that intersect at a given line� This structure is also a projective space of dimension one�

an analog to the space P� since� using the principle of duality� a pencil of planes is projectively
equivalent to a set of points on a same line �this line is the dual of the line of intersection of the
planes��

Let us use this concept to show that the ratios of the projective coordinates of a point M in a

given projective basis can be interpreted as a cross�ratio� In order to do this� we assume without
loss of generality �thanks to proposition �� that the projective basis is the standard projective
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basis of the projective space� We consider the four planes 
� 	 	e�� e�� e�
� 
� 	 	e�� e�� e�
�

� 	 	e�� e�� e	
 and 
� 	 	e�� e�� M
 which all go through the line he�� e�i� M is a point of
projective coordinates 	p� q� r� s
� The equations of these four planes are readily shown to be equal

to

� � x� � �

� � x� � �

� � x� � x� � �


� � rx� � sx� � �

We can use the two planes 
� and 
� and the plane of equation x�� x� � � as the projective basis
of the pencil of planes of axis he�� e�i� Looking at the previous equations� we see that


� � 
� � 
�

� � r
� � s
�

and therefore� the cross�ratio f
�� 
� � 
�� 
�g is equal to 
��

� s

r

� ���
�� s

r

� r
s
i�e� to the ratio of

the third to the fourth projective coordinates of M � This is shown in �gure �� We will use this
remarkable relation in sections 
�	 and ��	�

Figure � approximately here�

Collineations of P� are de�ned by 
�
 invertible matrices de�ned up to a scale factor� According
to proposition �� such a collineation is de�ned by 
 pairs of corresponding points� Collineations
transform points� lines� planes� and pencils of planes into points� lines� planes and pencils of planes�
preserving cross�ratios�

��� ��D space as an a�ne space

We now describe the second stratum that we will consider� The idea is to think of the world �and
for that matter of the retina� as an a�ne space embedded in the corresponding projective space�

i�e� P� and P�� respectively� We consider �rst the case of the retina� i�e� of the projective plane
and then the case of the world� i�e� of the projective space� But to make things more clear we start
with the projective line P� and show how we can associate an a�ne line to it�

����� Projective and a�ne lines

The point represented by e� is called the point at in�nity of the line P�� It is de�ned by the
linear equation x� � �� The reason for this terminology is that if we think of the projective line
as containing the usual a�ne line under the correspondence � 
 �e� � e�� then the projective

parameter � of the point gives us a one�to�one correspondence between the projective and a�ne
lines for all values of � di�erent from � �the a�ne line is simply the set of real numbers�� The
values � � �� correspond to the point e�� which is outside the a�ne line but is the limit of points
of the a�ne line with large values of �� This turns out to be an extremely useful interpretation of

the relationship between the a�ne and projective lines and� as we show later� can be generalized
to higher dimensions� Note that the choice of e� as the point at in�nity is arbitrary and any other
point will do equally well�
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����� Projective and a�ne planes

The line at in�nity Suppose we choose a line in the projective plane� Without loss of generality�

we can assume its equation to be x� � �� We call this line the line at in�nity of P�� denoted l��
Just as in the previous case of the projective line� the choice of l� as the line at in�nity is arbitrary
and any other line will do equally well� But it is worth noting that points and lines at in�nity can
be chosen consistently� i�e� if l� is the line at in�nity of P� and l a line of P� di�erent of l��

then l � l� is a suitable choice for the point at in�nity on l �see next paragraph�� The reason for
this terminology is that we can think of the projective plane as containing the usual a�ne plane
under the correspondenceX � �X�� X��

T 
 �X�� X�� ��
T or X�e��X�e��e�� This is a one�to�one

correspondence between the a�ne plane and the projective plane minus the line of equation x� � ��

For each projective point of coordinates 	x�� x�� x�
 that is not on that line� we have

X� � x�
x�

X� � x�
x�

���

If X� 
 � while X� does not� we obtain e�� which is on l�� Similarly� when X� 
 � while X�

does not� we obtain e��

Each line in the projective plane of the form of equation ��� intersects l� at the point 	�u�� u�� �
�
which is that line�s point at in�nity� Note that the vector ��u�� u��T gives the direction of the a�ne
line of equation u�X� � u�X� � u� � �� This gives us a neat interpretation of the line at in�nity�

each point on that line� with coordinates 	x�� x�� �
� can be thought of as a direction in the un�

derlying a�ne plane� the direction parallel to the vector �x�� x��
T � Indeed� it does not matter if x�

and x� are de�ned only up to a scale factor since the direction does not change� We will use this
observation later�

As a �rst� and very useful� application of the idea of thinking about the a�ne plane as embedded
in a projective plane� let us consider the case of two parallel �but not identical� lines� Since by
de�nition these two lines have the same direction parallel to the vector ��u�� u��T � this means that
if we consider them as projective lines of the projective plane� they intersect at the point represented

by ��u�� u�� ��T of l�� Therefore� two distinct parallel lines intersect at a point of l�� thinking of
the a�ne plane as embedded in the projective plane allows to avoid considering special cases�

A�ne transformations of the plane We have seen that there is a one�to�one correspondence
between the usual a�ne plane and the projective plane minus the line at in�nity� In the a�ne
plane� we know that an a�ne transformation de�nes a correspondence X 
 X�� which can be

expressed in matrix form as

X� � BX� b ���

where B is a � � � matrix of rank 	� and b is a � � � vector� From this equation it is clear that

these transformations form a group called the a�ne group� which is a subgroup of the projective
group� This subgroup has the interesting property that it preserves the line at in�nity�

Indeed� let A be the matrix of a collineation of P� that leaves l� invariant� The matrix A can
be written as

A �

�
C c

�T� a��

�

where C is a � � � matrix and c is a �� � vector� The condition that the rank of A is � implies
that a�� �� � and the rank of C is equal to 	� Using the equations ��� we can write equation ���
with B � �

a��
C and b � �

a��
c�

��



����� Projective and a�ne spaces

The plane at in�nity Similarly to the previous case� let us assume that we choose a plane in

the projective space P�� Without loss of generality� we can assume its equation to be x� � �� We
call this plane the plane at in�nity 
� of P�� The reason for this terminology� just as in the case of
P�� is that it is possible to think of the projective space as containing the usual a�ne space under
the correspondence X � �X�� X�� X��

T 
 �X�� X�� X�� ��
T or X�e� �X�e� �X�e� � e�� This is

a one�to�one correspondence between the a�ne space and the projective space minus the plane at
in�nity of equation x� � �� For each projective point of coordinates 	x�� x�� x�� x�
 not in that
plane� we have

X� � x�
x�

X� � x�
x�

X� � x�
x�

Similarly to the case of P�� points� lines� and planes at in�nity can be chosen consistently in P�� if


� is the plane at in�nity of P� and 
 �resp� l� is a plane �resp� a line� of P� not equal to �resp�
not included in� 
�� then 
 � 
� �resp� l � l�� is a suitable choice for the line at in�nity �resp�
the point at in�nity� on 
 �resp� on l�� Hence each plane of equation �
� intersects the plane at
in�nity along a line that is its line at in�nity�

As in the case of the projective plane� it is often useful to think of the points in the plane at
in�nity as the set of directions of the underlying a�ne space� For example� the point of projective
coordinates �x�� x�� x�� ��

T represents the direction parallel to the vector �x�� x�� x��
T and indeed�

it does not matter whether x�� x�� x� are de�ned up to a scale factor� since the direction does not

change� An analysis similar to the one done in the two�dimensional case shows that two distinct
a�ne parallel planes can be considered as two projective planes intersecting at a line in the plane
at in�nity 
��

A�ne transformations of the space In a similar fashion to the case of the projective plane�
we can consider the subset of the projective group that preserves the plane at in�nity� This set is

a subgroup of the projective group called the a�ne group� and the transformations can be written
in the same way as in equation ���

X� � BX� b ���

where matrix B is �� � and has rank �� and b is a �� � vector�

��� ��D space as a euclidean space

As a �nal stratum� and to complete our trilogy� we want to think of the world �and for that matter
of the retina� as a euclidean space embedded in the previous a�ne space� We consider �rst the
case of the retina� i�e� of the a�ne and projective plane and then the case of the world� i�e� of the

a�ne and projective space�

����� Euclidean transformations of the plane	 the absolute points

We can further specialize the set of a�ne transformations of the plane and require that they preserve
not only the line at in�nity but also two special points on that line called the absolute points I and
J with coordinates 	�� �i� �
� where i � p���

This imposes constraints on matrix B in equation ���� Since we insist that I and J remain
invariant� we have

�

i
�

b��� � b��i� b��

b��� � b��i� b��

��



�

�i �
b���� b��i� b��

b���� b��i� b��

which yields

	b�� � b��
i� 	b�� � b��
 � �

and
�	b�� � b��
i� 	b�� � b��
 � �

Therefore b�� � b�� � b�� � b�� � � and we can write

X� � c

�
cos� sin�
� sin� cos�

�
X� b ���

with c � � and � � � � �
� This class of transformations is sometimes called the class of similitudes�
It forms a subgroup of the a�ne group and therefore of the projective group� This group is called
the similitude group or the euclidean transformations group� The a�ne point represented by X is

�rst rotated by � around the origin� then scaled by c� and translated by b� If we specialize the class
of transformations further by assuming that c � �� we obtain another subgroup called the group of
�proper� rigid displacements�

As an application of the use of the absolute points� we show how they can be used to de�ne

the angle between two lines� The angle � between two lines l� and l� can be de�ned by considering
their point of intersection m and the two lines im and jm joining m to the absolute points I and J

�see �gure 	�� The angle is given by Laguerre formula�

� �
�

�i
log	fl�� l�� im� jmg
 ����

Which is also equal to the cross�ratio of the four points I� J� m�� m� of intersection of the four lines
with the line at in�nity l��

Because ei� � cos
 � i sin
 � ��� we see that if the cross�ratio fl�� l�� im� jmg is equal to ���
the two lines l� and l� are perpendicular�

Figure 	 approximately here�

����� Euclidean transformations of the space	 the absolute conic

We can also further specialize the a�ne transformations of the space and require that they leave
a special conic invariant� This conic� �� is obtained as the intersection of the quadric of equationP�

i�� x
�
i � � with 
�

�X
i��

x�i � x� � �

The conic � is also called the absolute conic� Note that in 
�� � can be interpreted as a circle
of radius i �

p��� an imaginary circle� Therefore� all its points have complex coordinates in the
standard projective basis and if m is a point of �� then m� the complex conjugate point� is also on
� since the absolute conic is de�ned by equations with real coe�cients� It is not di�cult to show

that the a�ne transformations that keep � invariant can be written

X� � cCX� b ����

where c � � and C is orthogonal� i�e�� satis�es the equation CCT � I �see for example 
		��� As in
the two�dimensional case� this subset of the a�ne group is a subgroup called the similitude group�

Similarly� the subset of the similitude group where c � � is also a subgroup called the group of
�proper� rigid displacements�

�	



��� Conclusion

We have shown how the world �resp� the retina� can be considered as a succession of strata� Each

stratum corresponds to a speci�c geometric structure that we impose on the world �resp� on the
retina�� These geometric structures can be ordered in a hierarchy� from general �i�e� the projective
structure�� to more specialized �i�e the euclidean structure�� To each stratum corresponds a group
of transformations� These three groups are included in each other in a group theoretical sense� the

group of similitudes is a subgroup of the a�ne group which is itself a subgroup of the projective
group� Each group leaves some geometric quantities invariant� the cross�ratio is the most notable
one for the projective group� the ratio of the lengths of two parallel vectors is the most notable one
for the a�ne group� and angles and ratios of lengths are the most notable ones for the group of

similitudes� We will see more of these invariants in the next sections�

	 Camera geometry

Let us now turn to the sensor that we use to measure the world� the camera� We model classically a

camera as a pinhole� This has proven to be an excellent approximation for most practical purposes�
Even though it is important to keep in mind that the pinhole model is only an approximation�
albeit usually a very good one� of a real physical camera� we hope to convince the reader in what
follows of the usefulness of forgetting for some time the actual physical device and of thinking of the

camera as a projective geometric engine� We develop this line of thought in the following sections
and relate the projective modelling of the camera to the three strata which were presented in the
previous section�

��� The perspective projection model

This projective engine maps the two�dimensional projective space P� onto the two�dimensional

projective plane P� by perspective projection from a center of projection C �the optical center of
the camera� onto a plane R not containing C �the retinal plane of the camera��

This projection operation is projective linear in the sense that if we choose a projective basis of
P� and a projective basis of P�� the correspondence between a point M of P� represented by M

and its image m of P� represented by m can be written in vector form

m � PM ��	�

where P is a � � 
 matrix of rank � de�ned up to the multiplication with a non zero scalar� This
matrix depends therefore upon �� parameters and is called the perspective projection matrix of the

camera�
Note that if we change projective basis in the world by M� � KM �K a 
� 
 matrix of rank ��

and in the retinal plane by m� � Hm �H a ��� matrix of rank ��� then the perspective projection
matrix becomes P� � HPK���

Given the perspective projection matrixP and without any further assumption about the world�

we can recover the coordinates of the optical center in the projective basis of the world� Indeed�
the optical center is the point for which the perspective projection is not de�ned� it has no image
and must therefore satisfy

PC � �

which shows that C is represented by any non zero vector of the nullspace of the matrix P which
is by de�nition of dimension � since rank	P
 � ��

��



��� Two cameras and the fundamental matrix	 the projective stratum

If we now consider a binocular stereo rig� we can bring in some more geometric information which

has profound implications for computer vision problems� Let us call C � the optical center of the
second camera and R� its retinal plane� The line hC� C �i intersectsR �resp� R� � in a point that we
denote by e �resp� e��� These two points are called the epipoles of the stereo rig� By construction�
any plane containing the line hC� C �i� called an epipolar plane� intersects R �resp� R�� along a

line going through the epipole e �resp� along a line going through the epipole e��� see �gure � �
Two such lines are called corresponding epipolar lines and have an immense importance for stereo
algorithms� We can rephrase the situation in projective terms by saying that the pencil of epipolar
planes induces in each retinal plane a pencil of epipolar lines� According to section � these three

pencils are projective lines� i�e� one�dimensional projective spaces P��

Figure � approximately here�

The fundamental property of this geometric construction is that the �natural� correspondence

between the two pencils of epipolar lines is projective linear� it is a homography between the
two pencils considered as projective lines� The �natural� correspondence consists in associating
with each epipolar line of the �rst pencil the corresponding epipolar line of the second� i�e� the
intersection of the epipolar plane de�ned by the �rst one and the two optical centers with the

second retinal plane� The reason why it is an homography is because it is one to one and preserves
cross�ratios� The cross�ratio of four lines of the �rst pencil is equal to the cross�ratio of the four
corresponding epipolar planes which is equal to the cross�ratio of the four corresponding epipolar
lines in the second retinal plane� This homography is at the heart of many of the ideas which will

be presented in the next sections �see �gure ��� We call it the epipolar homography�

Figure � approximately here�

Having presented the geometric viewpoint� let us now present its algebraic face� In order to do

this� we will adopt a slightly di�erent view� namely we will characterize the relationship between a
point m in the �rst retinal plane and its epipolar line l�m in the second� This correspondence is also
clearly projective linear �it is a projective linear mapping between the �rst retinal plane considered
as a P� and the dual of the second retinal plane� also considered as a P�� and therefore there exists

a �� � matrix F� de�ned up to a scale factor� such that

l�m � Fm

The matrix F is not of rank � since if m coincides with the epipole e its epipolar line is unde�ned
and therefore

Fe � �

Let us now further consider a point m� on the epipolar line l�m of m� This point satis�es the relation

m
�TFm � � ����

which shows that the epipolar line lm� in the �rst retinal plane of m� is represented by FTm��

lm� � FTm�

In particular we have
FT e� � �

��



The matrix F expresses algebraically the epipolar correspondence between the two retinal planes�
It is called the fundamental matrix 
	� �� ��� Its rank is in general equal to 	 and it therefore depends
upon seven free parameters� A set of such parameters which have a neat geometric interpretation

are the four ratios of projective coordinates of the two epipoles and the three ratios of the coe�cients
of the homography between the two pencils of epipolar lines�
Just as in the one�camera case where we related the optical center to the perspective projection

P� in the two�cameras case� we can also relate the fundamental matrix F to the two perspective
projection matrices P and P�� The interested reader is referred to� for example 
		��

��� Two cameras looking at planes	 the a�ne stratum

According to our discussion of section ���� in order to go from a projective representation of the
world to an a�ne representation� we have to identify the plane at in�nity� Before explaining how

this can be achieved� we will start with a brief description of the relationship between planes in the
world and a pair of cameras�

Indeed� planes in the world have very interesting properties with respect to our stereo rig� In

e�ect� a plane 
 induces in general a projective linear correspondence� a collineation� between the
two retinal planes�

This can be readily seen by noting that the perspective projection from 
 to R �resp� from 


to R�� is one to one if 
 does not contain the optical center C �resp� the optical center C �� and

preserves cross�ratios and is therefore a collineation� Composing the inverse of the �rst collineation
with the second de�nes a collineation from R to R� called the collineation induced by 
 that we
note H� and represent by the � � � matrix H�� Even though a collineation of P� depends upon
� parameters� there is no contradiction with the fact that a plane depends upon � parameters�

Indeed� the collineation is related to the fundamental matrix 
	� in the following manner� Let m
be a point of R� The point m� of R� represented by H�m is the image in the second camera of the
intersection of the optical ray hC� mi with 
� Therefore it belongs to the epipolar line of m and we

have
	H�m
TFm � �

for all points m� This implies that the matrix HT
�F is antisymmetric�

HT
�F� FTH� � � ����

This imposes six homogeneous constraints on the collineation�
The interaction between the geometry of the stereo rig and H� can also be seen as follows� Let

us consider the point of intersection P of the line hC� C �i with 
� The images of P in the two

retinal planes are the two epipoles e and e� which therefore correspond to each other through H��
A consequence of this is that if the fundamental matrix is known �and thus the epipoles�� three

pairs of corresponding points are su�cient to determine the collineation since a fourth pair 	e� e�

is already available�

This observation can be turned into a very simple geometric construction� Let us assume that the

plane �or its collineation� is represented by three pairs of corresponding points 	mi� m
�

i
� i � �� �� �

and the pair of epipoles 	e� e�
� Given a point m in the �rst image� how do we construct its image
m� in the second image under the plane collineation� This is shown in �gure 
� We construct the
point m�� intersection of the two lines hm�� m�i and hm�� mi� The point m�

�� in the second image
at the intersection of the line hm�

�� m
�

�i and the epipolar line l�m��
of m�� corresponds to m�� under

the plane collineation since the line projecting to hm�� m�i in the �rst image and to hm�

�� m
�

�i in the
second is certainly in the plane� Therefore� the line hm�

�� m
�

��i is the image of the line hm�� m��i

�




and its intersection with the epipolar line l�m of m yields the sought for point m�� We call this
procedure the Point
Plane procedure�

We can use this procedure for solving another problem which will appear several times in the

remaining of the paper� The problem is the following� Given a plane in the world represented
either by its collineation or by three pairs of point correspondences� and given a line in the world
represented by its pair of images 	l� l�
� construct the images of the point of intersection of the

line with the plane� If the plane is represented by its collineation� we just apply it to the line l�
obtaining d�� The point of intersectionm� of l� and d� is the image in the second camera of the point
M of intersection of the ��D line with the plane� m is then obtained for example by intersecting
the epipolar line of m� with l� If the plane is represented by three pairs of corresponding points

	mi� m
�

i
� i � �� �� � and the pair of epipoles 	e� e�
 then we can solve our problem very simply by
using twice Point
Plane� We call the resulting procedure Line
Plane�

Figure 
 approximately here�

Returning now to the problem of going from a projective representation of the world to an a�ne
one� we see that the problem is really to obtain at least three pairs of corresponding points which

are the images of three points in the plane at in�nity in order to estimate the collineation it induces
between the two retinal planes� We describe several ways of doing this in section ��

��� Two cameras looking at the absolute conic	 the euclidean stratum

The image of the absolute conic in each camera is also a conic and this conic does not change when
we move the camera around� This is because� as shown in section �� the absolute conic is invariant

with respect to similitudes of the world and hence to rigid displacements� It is hard to envision�
but it is nonetheless true� that the absolute conic is a curve with only complex points �see section

����	� whose image in a camera does not change when the camera is moved about the world� This
phenomenon is analog to what happens to the image of a point at in�nity when we translate the
camera� it does not change either� Both properties are intimately tied to the structure of the world

as an a�ne or euclidean space and to the geometric operation performed by a camera�

����� One camera and the absolute conic	 Measuring the angle between two optical

rays

If the image of the absolute conic is known in a camera� it then becomes a metric measurement
device that can compute angles between optical rays 
		�� This can be readily seen by using

Laguerre�s formula given in section ����� as follows� Let m and n be two image points and consider

the two optical rays hC� mi and hC� ni� Let us call � the angle �between � and 
� that they form� let
M and N be their intersections with the plane at in�nity� and let A and B be the two intersections

of the line hM� Ni with the absolute conic �� The angle � between hC� mi and hC� ni is given by
Laguerre �s formula �

�i log	fM� N � A� Bg
� The reason for this is that the line at in�nity of the
plane de�ned by the three points C� m� n is the intersection of that plane with the plane at in�nity�

i�e�� the line hM� Ni� The absolute points of that plane are the intersections A and B of that line

with the absolute conic ��
The cross�ratio fM� N � A� Bg is preserved under the projection to the retinal plane� and thus

the angle between hC� mi and hC� ni is given by �
�i log	fm� n� a� bg
� where the points a and b are

the �images� of the points A and B�

Since a and b are the two intersections of the line hm� ni with �� this shows that the angle can
be computed only from the image � of the absolute conic� The situation is depicted in �gure ��

��



Figure � approximately here�

In detail� the line hm� ni is represented by m� 	n� The variable 	 is a projective parameter of
that line� Point m has projective parameter �� and point n has projective parameter equal to ��
The reader should not worry about this� since the magic of the cross�ratio will take care of it�

In order to compute the projective parameters of a and b we apply equation ��� with S being

the equation of �� The projective parameters are the roots of the quadratic equation

S	m
 � �	S	m� n
 � S	n
	� � �

Let 	
 and 	
 be the two roots� which are complex conjuguate� According to equation �	�� we have

fm� n� a� bg �
�� 	


�� 	

�
�� 	


�� 	


The ratio containing � is equal to � �that is the magic��� and therefore

fm� n� a� bg �
	


	

� e�iArg����

where Arg		

 is the argument of the complex number 	
� In particular� we have � � Arg		

 	

�
A straightforward computation shows that the two roots are equal to

�S	m� n
� i
p
S	m
S	n
� S	m� n
�

S	n

��
�

Simple considerations show that

cos� � � S	m� n
p
S	m
S	n


����

an equation which uniquely de�nes � between � and 
� The sine is therefore positive and given byp
�� cos� ��

����� The absolute conic and the intrinsic parameters

We have seen previously that the image � of the absolute conic did not change when we moved the
camera in space� This� together with the fact that � contains only complex points� has some strong

implications on the coe�cients of the equation de�ning �� We now examine these consequences�
Let A be the symmetric matrix de�ning the equation of � in the retinal plane�

S	m
 �mTAm

Since � does not contain any real point� this means that S	m
 is either strictly positive or strictly
negative for all points m with real coordinates� Let us assume that it is strictly positive� The

quadratic form de�ned by matrix A is accordingly positive de�nite and we can use a theorem
which says that a necessary and su�cient condition for a quadratic form to be positive de�nite

is that its matrix can be written as WWT � where W is a lower�triangular matrix with positive

diagonal elements 
	��� This decomposition is called the Cholesky decomposition of matrix A and
is unique�

If we de�ne p � WTm� the equation of � can be written S	p
 � pTp� The matrix W can be
interpreted as de�ning a change of projective coordinates in the retinal plane� For reasons which

��



will become clear later� we are more interested in the matrix W�T which is upper triangular� Let
us write this matrix

W�T �

�
�� a b c

� d e

� � f

�
�	 ����

It is easy to see that W�T � like W� has positive diagonal elements and since W is� like A� de�ned

up to a scale factor� we can assume that f � � �f cannot be equal to � because otherwise the rank
of A would be less than ��� We also have a � � and d � �� Changing notations� we write

a � �u b � ��u cot 	
d � �v

sin � c � u

e � v


����

These equations uniquely de�ne the �ve parameters�u� �v� u
� v
� and 	� This is clear for �u� u
� v
�
For 	 and �v� we see that the equation b � ��u cot 	 de�nes 	 between � and 
� Thus the sine is
positive and since d � � this uniquely de�nes �v as a positive number�

These parameters have been introduced by several authors from physical and heuristic consid�

erations in the past 
		� 	� and are called the intrinsic parameters of the camera� Here they appear
without such considerations� as a consequence of the fact that the image of the absolute conic is
an imaginary curve�

Let us assume that the retinal plane is an a�ne plane� which makes sense if we are using the
image coordinates provided by the sensor� Note that we consider this a�ne plane as embedded in
a projective plane� in agreement with our general approach� The a�ne plane can be considered
as obtained from the projective plane by throwing away the line at in�nity of equation x� � �� A

point of the a�ne plane of coordinates 	u� v
 can be considered as a projective point of coordinates
	u� v� �
� Inversely� a projective point of coordinates 	x�� x�� x�
 not belonging to the line at in�nity
can be considered as an a�ne point of coordinates 	x�

x�
� x�
x�

�

We now give an intuitive interpretation of the intrinsic parameters in this context� First� let us

determine the center of �� We know that the center of a conic is the pole of the line at in�nity�
thus it is the point represented by �see section ��	�	�

A��e�

since the vector e� � ��� �� ��T represents the line at in�nity�
The relation A � WWT implies A�� �W�TW�� and therefore� according to equations ����

and ����� the center c of � is the point of a�ne coordinates 	u
� v

�
Let us now consider the optical ray hC� ci� We will show that it is perpendicular to all the

directions of lines of the retinal plane� In order to do this� let us consider a point m on the line

at in�nity of the retinal plane� The optical ray hC� mi is therefore parallel to the retinal plane�

In order to compute the angle between these two optical rays� we simply apply equation ��
� to
these two points� It is easy to show that S	m� c
 is equal to zero and therefore that the cross�ratio
fm� c � I� Jg is equal to ��� This means that hC� ci is perpendicular to hC� mi for each point m

on the line at in�nity of the retinal plane� Since we have seen that each such point represents a
line direction in the underlying a�ne plane� we have proved that the line hC� ci is orthogonal to
all lines in the retinal plane and therefore to the retinal plane itself� The optical ray hC� ci can be
considered as the optical axis of the camera�

Note that this interpretation is valid only if the original 	u� v
 plane is a �real� a�ne plane� i�e�
if it has not been projectively distorted� In that case the line at in�nity represented by 	�� �� �
 is

��



not the real line at in�nity and we cannot say anymore that the line hC� ci is perpendicular to the
retinal plane� We call this problem the problem of the �hidden� projective transformation�

In a similar spirit� we can give an interpretation of the angle 	 de�ned above in terms of the

retinal coordinate system� Indeed� let us consider the directions of the u� and v�axes� i�e� the
points at in�nity of coordinates 	�� �� �
 and 	�� �� �
� The angle � beween these two directions is
obtained by applying equation �����

cos� � � cos 	

which shows that the angle is 
 � 	 or 	 since we are actually measuring angles between lines �in
order to be able to talk about angles between vectors� we would have to orient the plane and this
is equivalent to distinguishing between the two absolute points��

Since the matrix WT is upper�triangular� it de�nes a collineation which preserves the line at
in�nity �an a�ne transformation�� Therefore� after the change of coordinate system de�ned by
p � WTm� the line at in�nity has not changed but the directions of the new u�� and v��axes are
orthogonal since the equation of the image of the absolute conic is S	p
 � pTp� Indeed� this

implies that S	u�
�
�v�

�

 � � where u�

�
and v�

�
are the points of projective coordinates 	�� �� �


and 	�� �� �
 in the 	u�� v�
 coordinate system and� according to equation ���� this shows that the
angle between the new u�� and v��axes is equal to �

� �

We can now give a familiar interpretation of the equations ����� We consider the matrix WT

as de�ning a change of coordinate system from the a�ne plane 	u� v
 to the a�ne plane 	u�� v�
�
We know that the directions u� and v� are orthogonal� Let us consider an orthonormal system of
coordinates centered at c with axes u� and v�� Let p be a point represented by the vector �u�� v�� ��T

in that coordinate system� The equation p � WTm and the equations ���� can be written as
follows

u� � u�u�
�u

� v�v�
�v

cos 	

v� � v�v�
�v

sin 	

where u and v are the a�ne coordinates of the pointm� This shows that the 	u� v
 �pixel� coordinate
system is obtained from the 	u�� v�
 �normalized� coordinate system by translating the origin by
	�u
� �v

� rotating the v��axis by 	� �

� and scaling the unit vectors in the u� and v�directions by
�
�u

and �
�v

� respectively �see �gure ��� This is precisely the de�nition of the intrinsic parameters

given for example in 
		� from heuristic considerations�
As mentioned previously� this interpretation does not hold true anymore if the plane 	u� v


has been projectively distorted� The points u� and v� are not at in�nity anymore and the

interpretation of 	 does not make sense ��hidden� projective transformation problem�� This could
happen� for example� if the retinal plane were tilted with respect to the real optical axis of the
optical system of the camera �misalignment�� On the other hand� and this is very important� all
angle measurements based on equation ���� are still valid because they do not make any assumption

about the line at in�nity of the retinal plane�
To summarize� the usual interpretation of the intrinsic parameters �u� �v� 	� u
� v
 in terms of

physical parameters attached to the camera is valid only if the original retinal plane has not been
distorted by a projective transformation� But� even if this is the case� the camera can still be used

to perform euclidean measurements through equation ���� which does not require the knowledge
of the line at in�nity in the retinal plane�

Figure � approximately here�

��



����� Two cameras and the absolute conic

As a �nal property of the absolute conic� let us consider its pair of images in the two retinal planes of

a stereo rig and the two epipolar planes which are tangent to the absolute conic �they are complex
conjuguate� intersecting along the real line hC� C �i�� These two planes intersect the two retinal
planes along two pairs of corresponding epipolar lines� by de�nition� and these epipolar lines are
tangent to the images of the absolute conic in the two retinal planes� This property will be used in

section ����	 to derive the Kruppa equations�


 Recovering the projective stratum

In this section we show that a stereo rig for which the fundamental matrix has been estimated
allows to recover the �rst stratum of the world� its projective structure� Even though this can be

done algebraically 
�
� we will develop here a purely geometric approach� But �rst we give some
indications about the way the fundamental matrix can be estimated from a pair of images�

��� Learning the fundamental matrix

The estimation of the fundamental matrix of a stereo rig is a problem which has recently received
a lot of attention from a variety of people 
	� �� 
�� The basic idea is to use equation ���� for a

number N of known pairs of corresponding pixels 	mi� m
�

i
� We obtain equations which are linear
in the coordinates of matrix F� More speci�cally� let us note f the ��dimensional vector whose

coordinates are the elements of F� Each equation ���� can be written as

aTi f � ��

and the whole set of equations can be written in matrix form

Af � �

where A is an N � � matrix� Let a� and a
 be the last two column vectors of A� f � �gT � f�� f
�
T �

and let us rewrite the previous equation as

Bg � �f�a� � f
a


Assuming that the rank of the N�� matrix B is seven� we can solve for the �rst seven components
g of f in the usual way

g � �f�	BTB
��BTa� � f
	B
TB
��BTa


The solution depends upon two free parameters f� and f
 which can be determined by using the

constraint det	F
 � �� We obtain a third�degree homogeneous equation in f� and f
 and we can
solve for their ratio� Since a third degree equation has at least one real root we are guaranteed
to obtain at least one solution for F� This solution is de�ned up to a scale factor and some

normalization must be performed in order to make comparisons� One possibility is to normalize

f such that its vector norm is equal to �� If there are three real roots� we choose the one which
minimizes the vector norm of Af � subject to the previous constraint� In fact we can do the same
computation for any of the �� choices of pairs of coordinates of f and choose� among the possibly
��� solutions� the one which minimizes the previous vector norm�

This approach has the problem that it does not minimize a meaningful criterion in terms of
image measurements� Even though equation ���� can be normalized by imposing that the vector

	�



norms of m and m� are equal to �� what we really would like to happen is that the image distance

of m� �resp� of m� to the epipolar line of m �resp� of m�� is small and this is not guaranteed by the
previous approach� This has led people to minimize the sum over the pairs of corresponding pixels

of the sum of the distance of m� to the epipolar line of m and the distance of m to the epipolar line
of m�� The reader can easily verify that this criterion is not polynomial in the elements of F and
that its minimization poses the usual problems of minimizing a criterion which is not a positive

quadratic form in the unknowns� The best results have been obtained by initializing he nonlinear
criterion with the result of the �rst method 

�� A stereo rig for which the fundamental matrix F
is known is said to be weakly calibrated�

��� Recovering the projective structure of the world	 the projective stratum

Let us choose �ve pair of point correspondences 	ai� a
�

i
� i � �� � � � � � in the two images� These
correspondence may have been obtained� for example� in the process of estimating the fundamental
matrix� We choose the �ve points Ai in the world as a projective basis� Note that these points are

not known in the usual sense� the only thing we know is their projections in the two images are
the pairs 	ai� a

�

i
� They must be such that no four of them are coplanar �section ��	��� but this
property can be checked directly from the pair of images 
�
�� In order to show� for example� that
the point A� is not in the plane de�ned by A�� A�� A�� it is su�cient to show that the projective

coordinates of a� in the projective basis 	e� a�� a�� a�
 are di�erent of those of a�� in the projective
basis 	e�� a��� a

�

�� a
�

�
� Given any futher point correspondence 	m� m�
 it de�nes a ��D point M �
We will show that the ratios of its projective coordinates in the previous projective basis can be
computed from the pair of images� In order to do this we will use the fact that each such ratio is

the cross�ratio of four planes and use the Line
Plane construction described in section ��	�
Suppose for example that we want to compute the ratio of the third to the fourth projective

coordinates� in the previous projective basis� ofM of images 	m� m�
� We have seen in section to be

equal to the cross�ratio of the four planes 	A�� A�� A	
� 	A�� A��M
� 	A�� A�� A�
 and 	A�� A�� A�
�
Let P and Q be the points of intersection of the line hA�� A�i with the planes 	A�� A�� A	
 and
	A�� A��M
� respectively� Our cross�ratio is therefore equal to the cross�ratio of the four points
	P� Q� A�� A�
 which can be computed from either one of the two images after we construct the

images 	p� p�
 and 	q� q�
 of P and Q which we can do using the Line
Plane construction of section
��	�

These coordinates are invariant� by de�nition� under any collineation of the world� We have
therefore computed a projective invariant representation of the world from a pair of weakly cali�

brated cameras�

� Recovering the a�ne stratum

In this section� we show that a stereo rig for which the fundamental matrix and the collineation
induced by the plane at in�nity have been estimated allows to recover the second stratum of the

world� its a�ne structure�


�� Estimating the plane at in�nity

In some cases� some a�ne invariant information about the scene may be available� For example�
we may know that two lines are parallel� Two parallel lines intersect in the plane at in�nity and

therefore the points of intersection of their images in the two retinal planes are the images of that

	�



point in ��� Another example is if we know the midpoint of a segment� Let a� �resp�a��� and
a� �resp� a��� be the images of the two endpoints and let a �resp� a�� be the known images of
the midpoint� What does it teach us about the plane at in�nity� well� let us consider the point

at in�nity B of the line of support of our line segment� Since A is the midpoint of A�A�� the
cross�ratio fA� B� A�� A�g equals ��� Since the cross�ratio is preserved by perspective projection�
The image b �resp� b� � of B satis�es fa� b� a�� a�g � �� �resp� fa�� b�� a��� a��g � ���� In order

to construct b �resp� b�� we only have to construct the harmonic conjugate of a with respect to
a� and a� �resp� the harmonic conjugate of a� with respect to a�� and a��� and this is a standard
geometric construction that can be performed with a straight�edge only 
	��� The correspondence
	b� b�
 yields one point in the plane at in�nity�

More generally� if we have three pairs of correspondences 	ai� a
�

i
� i � �� �� � such that a�� a�� a�
�resp� a��� a

�

�� a
�

�� are aligned� then the corresponding ��D points A�� A�� A� are aligned if and only
if the two cross�ratios fe� a�� a�� a�g and fe�� a��� a��� a��g are equal� If we happen to know the ratio
of lengths A�A�

A�A�

� then it determines the vanishing point b �resp� b�� of the two image lines and thus

one point in the plane at in�nity� since we must have fa�� b� a�� a�g � fa��� b�� a��� a��g � A�A�

A�A�

�
If no such information is available but if we can control the displacement of our stereo rig then

we can exploit the fact that if we translate it without rotating it� straight lines remain parallel to

themselves� More precisely� suppose we have a line L with images l and l� before the translation

of the stereo rig� After the translation� the images of L are l� and l�� and because the rig has
translated� the points a and a�� intersections of l and l� in the �rst image and of l� and l�� in the

second� are the images of a point A at in�nity� i�e� the point at in�nity of L� Note that in order
to obtain this information we must have obtained the correspondence 	l� l�
 by some other process
and kept track of l �resp� l�� while the rig was translating in order to obtain the correspondence
	l�� l

�

�
� A variant of this idea which has been implemented in the author�s laboratory is to obtain

point correspondences between the two images �this is needed to estimate the fundamental matrix�
and then track them while the rig is translating 
��� Since two points de�ne a line we are back to
the line case�


�� A�ne reconstruction

Suppose that we have identi�ed the plane at in�nity� As strange as this may sound� the plane at
in�nity has nothing special to it and� just as a regular plane� it induces a collineation between the
two images� We know that this collineation is in general de�ned by four point correspondences but�

if the fundamental matrix has been estimated� three point correspondences are su�cient� We have
described in the previous section very simple ways of obtaining these correspondences by actively
moving the cameras or by using some information about the scene�

We now choose four pairs of point correspondences 	ai� a�i
 in the two images� We choose the

corresponding four points Ai in the world as an a�ne basis� More precisely� we choose A� as the
origin of the a�ne frame and the three vectors A�Ai 	 ei��� i � �� �� 
 as the basis vectors� This
assumes that none of the four points Ai lies in the plane at in�nity� This can be checked since the

collineation H� induced by �� between the retinal planes is known� We simply have to check that
H�ai is su�ciently di�erent from a�i for each i�

Given any further point correspondence 	m� m�
� not in the plane at in�nity� we will show that
the a�ne coordinates of the corresponding ��D point M in the a�ne basis 	A�� e�� e�� e�
 can be

computed from the pair of images� We will do it in two di�erent ways�
First we will simply adapt the method presented in section 
�	 to this case and second� we will

present a somewhat more intuitive construction� Both methods are of course equivalent�

		



The a�ne basis 	A�� e�� e�� e�
 can be considered as a projective basis 	A�� A���� A���� A���� A	

where the points A�i�� i � �� �� 
 are the points at in�nity of the lines hA�� Aii and A	 is the point
of coordinates 	�� �� �
 in the a�ne basis� Since the images of the three points A�i�� i � �� �� 


can be constructed using the procedure Line
Plane and if the images of A	 can be constructed
from the images� we can apply exactly the projective scheme described in section 
�	� Indeed� we
know from section ��� that when the projective coordinates in P� are chosen in such a way that

the equation of the plane at in�nity is x� � � the a�ne coordinates of a point in P� 
�� are the
ratios of its �rst three projective coordinates to the fourth� This construction is shown in �gure ��

Figure � approximately here�

It remains to show how to construct 	a	� a
�

	
� According to �gure �� this can be done in three
main steps� each of them being implementable in the images�

�� Construct P� intersection of the line going through A� and parallel to hA�� A�i with the line
going through A� and parallel to hA�� A�i�

	� Construct the line going through P and parallel to hA�� A�i�
�� Construct the line through A� parallel to hA�� P i�

These last two lines intersect in A	�

Figure � approximately here�

The corresponding construction in the �rst image plane follows the same pattern and is shown
in �gure ��� In what follows� we denote by vpq the vanishing point of the image line hp� qi where p
and q can take any of the four values a� b� c and d� For example� vab is the vanishing point of the
line ha� bi�

�� Construct� using the procedure Line
Plane� the vanishing points va�a� and va�a� � p is at the
intersection of ha�� va�a�i and of ha�� va�a�i�

	� Construct� using the procedure Line
Plane� the vanishing points va�a� of the line ha�� a�i�
�� Construct� using the procedure Line
Plane� the vanishing point r of the line ha�� pi�

The point a	 is at the intersection of ha�� ri and hp� va�a�i�

Figure �� approximately here�

The second method may be more intuitive and can be found in 
	��� According to �gure
��� in order to compute the a�ne coordinates of M� we need to construct the images of two
points� the point Q� on the line hA�� A�i such that the line hM� Q�i is parallel to the plane

	A�� A�� A�
� and the point Q� intersection of the line going through M and parallel to hA�� A�i
with the plane 	A�� A�� A�
� From Q we then compute Q� �resp� Q��� intersection of the line
going through Q and parallel to hA�� A�i �resp� parallel to hA�� A�i� with hA�� A�i �resp� with

hA�� A�i�� The three a�ne coordinates of M are the ratios A�Qi

A�Ai

� i � �� �� 
� Introducing the

points at in�nity A�i�� i � �� �� 
 of the four lines hA�� Aii� these ratios are in fact equal to the

cross�ratios fA�� A�i�� Qi� Aig which are preserved by perspective projection and can be computed
from the images�

	�



Figure �� approximately here�

The images of Q are readily obtained� va�a� �resp� va�
�
a�
�

� can be constructed through the
procedure Line
Plane� This pair� together with the pair 	m� m�
� de�ne a ��D line and� applying
our procedure Line
Plane a second time we construct the images 	q� q�
 of the intersection of
that line with the plane 	A�� A�� A�
� Once this construction has been completed� one notices that

the line hM� Q�i is parallel to the line hA�� Qi� We thus construct� using again the procedure
Line
Plane� the vanishing points va�q and va�

�
q� of the lines ha�� qi and ha��� q�i� q� �resp� q��� is

then obtained as the intersection of the line hva�q� mi �resp� hva�
�
q�� m

�i� with the line ha�� a�i �resp�
ha��� a��i�

From va�a� �resp� va�
�
a�
�

� va�a� �resp� va�
�
a�
�

� we construct the points of intersection q� and q�
�resp� q�� and q��� of the lines hq� va�a�i and hq� va�a�i �resp� of the lines hq�� va�

�
a�
�

i and hq�� va�
�
a�
�

i
with ha�� a�i and ha�� a�i�� The a�ne coordinates 	X� Y� Z
 of M are then obtained in either one

of the two images as the following cross�ratios

X � fa�� va�a� � q�� a�g � fa��� va�
�
a�
�

� q��� a
�

�g
Y � fa�� va�a� � q�� a�g � fa��� va�

�
a�
�

� q��� a
�

�g
Z � fa�� va�a� � q�� a�g � fa��� va�

�
a�
�

� q��� a
�

�g

These coordinates are invariant� by de�nition� under any collineation of the world� We have there�
fore computed an a�ne invariant representation of the the world from a pair of weakly calibrated

cameras for which the collineation induced by the plane at in�nity is known�
As a �nal remark to conclude this section� in many cases one may not be interested in computing

these a�ne coordinates� only in computing a�ne invariant three�dimensional properties of the scene
such as ratios of lengths� midpoints� in checking a�ne invariant three�dimensional properties of the

scene such as parallelism of lines� planes� or even in performing a�ne invariant constructions such
as drawing a line going through a given point and parallel to a given line� constructing the midpoint
of a line segment� etc��� All these operations can be performed without choosing coordinates just

by using the fundamental matrix and the knowledge of the plane at in�nity� If coordinates must
be computed that can also be done directly from the images themselves and without explicitely
reconstructing the points�

� Recovering the euclidean stratum

In this section we want to push our ideas to their �nal stage and show that a stereo rig for which

the fundamental matrix� the collineation induced by the plane at in�nity and the two images of the
absolute conic have been estimated allows to recover the third stratum of the world� its euclidean
structure or� more precisely� its structure up to a similitude� It is in fact redundant to know the
collineation at in�nity and the two images of the absolute conic as shown later�

��� Estimating the image of the absolute conic

We now describe several ways of estimating the image of the absolute conic� First� in some cases�
some similitude invariants of the scene may be available� For example� we may know the angle

between two lines� or the ratio of the lengths of two non parallel segments� Each such bit of
information yields a constraint on the image of the absolute conic� an idea that is used� at least in
the case of angles� in 
	
��

	�



����� A priori information about the scene

If we know the angle � between two lines in the world� according to the analysis of section ����	�

and to equation ����� this yields the following constraint on the coe�cients of the equation of �

S	m� n
� � S	m
S	n
 cos� � ����

This equation is seen to be a quadratic constraint on the coe�cients of the equation of ��
If we have two images of the scene for which we know the plane at in�nity �see section ��� then

we can obtain the vanishing point vpq of any line hp� qi� Now if we know the ratio of the lengths

of two non coplanar segments AB and CD� we can use equation �	�� which will be derived in the
section ����	 to derive another constraint on the coe�cients of the equation of �� Let us call r the
�known� ratio AB

CD
and de�ne

D	vpq�vst
 � S	vpq�vst

� � S	vpq
S	vst


Using equations ���� and �	�� we obtain the following constraint on the coe�cients of the equation
of �

D	vac�vbc
D	vcd�vbd
S	vab
 �

r�D	vac�vab
D	vbc�vbd
S	vcd

�	��

which is seen to be a polynomial of degree 
 in the coe�cients of the equation of ��

A similar constraint on the image of the absolute conic in the second image can be written�
If that image has been obtained with the same camera without changing the internal parameters�

then we obtain a second constraint on ��

����� Moving the camera and using Kruppa�s equations

If no a priori information about the scene is available� we can still estimate the image of the absolute
conic by using motions of the cameras� Note that the camera motions do not have to be known

and can be anything as long as they are not pure translations or pure rotations� as shown in section
��	��� This observation was made in 
	�� and turned into an algorithm and a working method in

	� ���

We now show that each such motion yields two quadratic polynomial equations in the coe�cients

of the equation of the dual of the image of the absolute conic� In order to do this� we note that if we
move a camera from position � to position 	 without changing its internal parameters� the image
of the absolute conic remains the same� as was pointed out in sections ����	 and ���� Also� as we

noticed in section ������ the two tangents from the epipoles to this image correspond to each other
in the epipolar homography� Expressing these two facts algebraically yields the two equations�

Let B be the matrix of the dual of the image of the absolute conic� Let m be a point in the
retinal plane� e the epipole� The line he� mi is represented by the cross�product e�m which we write

in matrix form �e��m with �e�� being the antisymmetric matrix representing the cross�product with
the vector e� To say that this line is tangent to � is equivalent to saying that the point represented
by �e��m is on the dual conic ��� Hence we write the algebraic equation

	�e��m
TB�e��m � �

or

mT �e��B�e��m � � �	��

	




This quadratic equation in the coordinates of m is the equation of the two tangents from e to ��
From the previous considerations� for each point m on either one of these two tangents� its

epipolar line must also be tangent to the image of the absolute conic in the second image� But we

have seen that the image of the absolute conic in the second image is identical to its image in the
�rst� The same is of course true of the dual conics� Therefore� introducing the fundamental matrix
F� we can write that

mTFTBFm � � �		�

if and only if the point m is on one of the previous two tangents� This second quadratic equation
in the coordinates of m therefore also de�nes the two tangents from e to � and� thus� The two
equations �	�� and �		� are equivalent�

This yields a priori �ve quadratic equations in the coe�cients of B� But in fact� because
equations �	�� and �		� represent a pair of lines and not a general conic� only two of these �ve
equations are independent since it is su�cient to look at the intersection of the tangents with
another line not going through e� In 
	�� 	�� 	�� 	�� the line was chosen to be the line at in�nity

but in principle any line not going through e will do�
The two equations are called the Kruppa equations in recognition of the work of this Austrian

mathematician 
	�� who worked on a variant of a problem posed by Chasles 
���� For details about

the implementation of these ideas and experimental results� see 
�� ���

��� From a pair of images of the absolute conic to the plane at in�nity

We have now estimated the images � and �� of the absolute conic in the two retinal planes of our
stereo rig� Since the absolute conic lies in the plane at in�nity� from the two conics and the epipolar

geometry de�ned by the fundamental matrix� we should be able to recover the plane at in�nity�

����� From two images of the absolute conic to H�

As shown previously� this is equivalent to estimating the collineation that it induces between the
two retinal planes and� for that matter� three point correspondences are su�cient� The question

is of course how to obtain such correspondences� We may think of choosing a point m on � and

compute the intersection of its epipolar line with �� to obtain a corresponding point m� on ��� The
problems with this approach is that m has complex coordinates and that its epipolar line �also a

complex line� intersects �� in general in two complex points� Thus we have an ambiguity� One way
to go around this di�culty is to do a bit of geometry�

Let m be a point in the �rst retina� The optical ray hC� mi intersects the plane at in�nity in
a point which we denote by M�� How can we build the image m�

�
of M� in the second retinal

plane� this point is on the epipolar line l�m of m and is such that the angle between the line hC� C �i
and the the optical ray hC �� m�

�
i is the same as the angle between hC� C �i and the optical ray

hC� mi� But this angle is known since we know � and the epipoles� consider the two points a and b

of intersection of the epipolar line he� mi with �� the angle is given by the cross�ratio fe� m � a� bg�
Therefore� considering the two points of intersection a� and b� of l�m with ��� m�

�
can be built as the

point of l�m such that the cross�ratio fe�� m�

�
� a�� b�g is equal to fe� m � a� bg� These two cross�ratios

being of course equal to the cross�ratio fE� M� � A� Bg as shown in �gure �	� The details of the

computation can be found in appendix A�

Figure �	 approximately here�

	�



The situation is of course symmetric between the two retinal planes and� given a point m� in
the second retinal plane� we can similarly build the image m� of the intersectionM �

�
of the optical

ray hC �� m�i with the plane at in�nity� We can thus build an arbitrary large number of pairs of

point correspondences 	m� m�

�

 or 	m�� m

�
 corresponding to points in the plane at in�nity� From
these pairs� the collineation H� can be estimated�

����� A three
dimensional euclidean interpretation of H�

Let us show that after an a�ne change of coordinates in the two retinal planes such that the

equation of the absolute conic in the �rst image �resp� the second� is pTp � � �resp� p
�Tp� � �� its

matrix H� is proportional to a rotation matrix� Indeed� let us suppose that we change coordinate
systems in the two retinal planes and de�ne p � WTm and p� � W

�Tm� where W and W� are
de�ned from the equations of � and �� as explained in section ����	� The equations of the images

� and �� of the absolute conic are S	p
 � pTp � � and S�	p�
 � p
�Tp� � �� Let p be a point of

� and p� its image under H�� p� belongs to �� and therefore S�	p�
 � �� But this is also equal

to pTHT
�
H�p and must equal � for all points p of �� i�e� HT

�
H� is proportional to the identity

matrix I� This shows that the matrix H� is proportional to a rotation matrix RT � This matrix

has a very intuitive interpretation� If we consider an orthonormal system of coordinates centered
at the optical center C� �resp� C�� with vectors parallel to the optical axis hC�� c�i �resp� hC�� c�i
and the u��� and v��� orthogonal directions �resp� the u

�

�� and v��� orthogonal directions� the matrix

R is the one transforming the directions of the axes of the �rst coordinate system into those of the
second� see �gure ���

If we express H� in the pixel coordinate systems�

H� �W
�
�TRWT

which shows that in the case where the two cameras are identical� i�e� W �W�� H� is such that

R �WTH�W
�T �

Hence� using the fact that R is orthogonal� and introducing the matrix A� we write�

A � HT
�
AH�

This shows that if the collineation H� has been estimated by some means� perhaps by matching
points between the two views� then this matrix equation can be used to solve for the coe�cients

of A and then� by the Cholesky decomposition� for those of W� This idea has been proposed and
put into a working algorithm by Hartley 
����

Figure �� approximately here�

The idea that was used to construct H� from � and �� can be used to compute directly the
vanishing points of a pair 	l� l�
 of image lines without using the procedure Plane
Line� Here is
how it works� Suppose that l is de�ned by the two points 	m� p
 �resp� l� is de�ned by the two

points 	m�� p�
�� Note that we do not require that either m and m� or p and p� be corresponding
points� We then build m�

�
and p�

�
in the second retinal plane� images of the points at in�nity of

the optical rays hC� mi and hC� pi� and m� and p� in the �rst retinal plane� images of the points
at in�nity of the optical rays hC �� m�i and hC �� p�i� The vanishing point q of l �resp� q� of l�� is then

obtained as the intersection of l and hm�� p�i �resp� of l� and hm�

�
� p�

�
i�� We call this procedure

the Vanishing
Point procedure�

	�



����� How H� constrains � and ��

We show in the next section how to use both the homography of the plane at in�nity and the images

of the absolute conic to compute ratios of distances� an invariant for the group of similitudes� But
before going into this� we study how the knowledge of the collineation H� of the plane at in�nity
constrains � and ��� Since � and �� are the images of � in the two retinas� their duals �� and �

�
�

are the images of ��� As H� is the collineation from the �rst retinal plane to the second induced

by 
�� H�T
�

represents the collineation from the dual of the �rst retinal plane to the dual of the
second� In other words� lines of R are transformed into lines of R� by the collineationH�T

�
� Indeed�

let l� be a line of R�� represented by l�� Its equation can be written

l
�Tm� � � �	��

But for all points of R� there exists a unique point m of R such that

m� � H�m

Replacing m� by its value in �	��� we obtain

	HT
�
l�
Tm � �

and therefore� l� is the image of the line l of R represented by H�T
�
l�

Let now l and l� be corresponding lines for the collineation H�� If l belongs to ��� we have
lTBl � �� But l� must then belong to �

�
� and satisfy l

�TB�l� � �� This implies the following relation
between B and B�

H�BH
T
�

� B� �	��

and imposes six homogeneous linear constraints on the coe�cients of B and B��
If the epipolar geometry is also known� a reasoning similar to that of the previous section shows

that

FTBF � B� �	
�

which yields another set of six homogeneous linear equations which according to ���� are not
independent of �	���

����� The Longuet
Higgins equation� pure camera translation

Let us �nish this section by giving an interpretation of the fundamental matrix F when each retinal

plane is referred to its normalized coordinates� We know that in this case we can choose H� � RT �
We then write equation ����

RF� FTRT � �

which says that the matrix FTRT is antisymmetric� Let us write it �t��� where t is a vector� We

thus have�
FT � �t��R

which shows that the transpose of the fundamental matrix is nothing but the essential matrix
E de�ned by Longuet�Higgins in his ���� paper 
�	�� The properties of this matrix have been

subsequentally studied by several authors 
��� ��� 		�� The vector t which appears in the de�nition
is parallel to the line hC�� C�i� The equation ���� becomes the well known Longuet�Higgins equation

mTEm� � �

	�



� This allows us to interpret the vector t just introduced as the direction of the translation between
the two optical centers� i�e� the direction of the line hC�� C�i in �gure ���

Returning to equations �	�� and �		�� we see that if the displacement between the two camera

positions is a pure translation� i�e� R � I� we have FT � �t�� � �e��� The equations �	�� and �		�
are identical and there are no Kruppa equations in that case�

��� From a pair of images of the absolute conic
 the plane at in�nity to simili�

tude invariants

����� Angles

We know from a previous section that the knowledge of the image of the absolute conic in one

camera allows to compute angles between optical rays� Knowing the images of the absolute conic
in two cameras allows to compute angles between any lines� For example� given three pointsA� B� C
in the world with images a� b� c �resp� a�� b�� c�� in the �rst �resp� second� retinal plane� how do we
compute the angle between the lines hA� Bi and hA� Ci� Let P �resp� Q� be the points at in�nity

of hA� Bi �resp� hA� Ci�� The angle 	 is obtained by a straightforward application of Laguerre�s
formula� In order to be able to compute the cross�ratio that appears into it� we must be able to
compute the images of P and Q� i�e� the vanishing points of the image lines ha� bi �resp� ha�� b�i�
and ha� ci �resp� ha�� c�i�� This is possible since� according to the previous section� we know the

plane at in�nity� We can thus call upon our Line
Plane or Vanishing
Point procedures� More
precisely� and according to equation ����� we have

cos	hA� B i� hA� C i
 � � S	p� q
p
S	p
S	q


� � S�	p�� q�
p
S�	p�
S�	q�


�	��

and of course the sine is obtained as
p
�� cos�	hA� B i� hA� C i
�

More generally� the angle between two general lines hA� Bi and hC� Di� not necessarily coplanar

is obtained by considering the point at in�nity P of hA� Bi and the point at in�nity Q of hC� Di
�i�e� the directions of the two lines� and computing the cross�ratio of P and Q and the points of
intersection of the line hP� Qi with the absolute conic� this computation being of course performed

in the images� i�e� using equation �	���

����� Ratios of lengths

Let us now describe how we can compute the other type of similitude invariants� the ratios of
lengths� Using the fact that angles can be computed� we show how to use them to compute ratios

of lengths� Let us consider four points A� B� C and D and suppose we want to compute the ratio
AB
CD

� Considering the two triangles ABC and BCD� as shown in �gure ��� we can write� for the
�rst triangle

AB

sin

�

BC

sin�

and� for the second
BC

sin �
�

CD

sin�

from which we obtain the ratio AB
CD

as a function of the four angles �� �� 
 and �

AB

CD
�

sin 
 � sin �
sin� � sin� �	��

	�



Figure �� approximately here�

Figure �
 shows the computation in the �rst image plane� Using the procedure Line
Plane
or Vanishing
Point� we construct the four vanishing points vab� vac� vbc� vbd� and vcd of the im�
age lines ha� bi� ha� ci� hb� ci� hb� di and hc� di� The sines which appear in equation �	�� are then
obtained through equation ����� More speci�cally� we obtain the neat formula for the ratio AB

CD

computed in the �rst image in which appears only the equation of ��

AB

CD
�

s
S	vab


S	vcd

� S	vac
S	vbc
� S	vac� vbc
�

S	vab
S	vac
� S	vab� vac
�
� S	vbd
S	vcd
� S	vbd� vcd
�

S	vbc
S	vbd
� S	vbc� vbd
�
�	��

The geometry is shown is �gure �
�

Figure �
 approximately here�


 Conclusion

Table � approximately here�

We have reached the end of a fairly long journey in which we have seen that when we look at
the physical world with a set of two cameras� there appears a natural hierarchical set of geometric

descriptions of this world which involve a trilogy of groups of transformations which leave these
descriptions invariant� i�e� among which we cannot discriminate� These three groups are the
projective� the a�ne� and the similitude groups� For each of these descriptions� we have indicated

a corresponding geometric property of the set of two cameras which� once known� allows to recover
the related description from pairs of corresponding image features� We have also indicated how
these properties of the pair of cameras could be estimated from images of the physical world� This is
interesting in itself as well as in connection with the psychophysical work of Droulez and Cornilleau


�
� in which they showed that humans with normal uncorrected vision and wearing distorting lenses
could recover� after some time� the ability to perform correct metric judgments� Another important
aspect of our work is that it clearly shows that� for each subgroup of interest� all three�dimensional
invariants of the scene can be estimated directly from the images without performing an explicit

��D reconstruction of the scene� This may buy stability in applications in particular because it
avoids the problem� mentioned in section ����	� of the �hidden� projective transformation� But
this has to be checked experimentally� Table � summarizes the relations between the three strata

of the physical world� the geometric properties of the stereo rig� and some of the three�dimensional

quantities that can be recovered directly from the images�

��



A Computing m�
�

From section � we know that the angle 	 between the optical ray hC� mi and the baseline hC� C �i
is given by�

cos 	 � � S	e�m
p
S	e
S	m


Therefore we want to �nd m�

�
on the epipolar line l�m such that

S�	e��m�

�

p

S�	e�
S�	m�
�



is equal to � cos 	� Let us choose any point m� on l�m and write

m�

�
�m� � �e�

The problem is to determine �� We write

S�	e��m�

�

 � S�	e��m�
 � �S�	e�


S�	m�

�

 � S�	m�
 � ��S�	e��m�
 � ��S�	e�


We then express the fact that cos� 	 � S���e��m�

�
�

S��e��S��m�

�
� � We obtain a quadratic equation in the unknown

��
��S��	e�
 sin� 	 � ��S�	e�
S�	e��m�
 sin� 	 � S��	e��m�
� S�	e�
S�	m�
 cos� 	 � �

In order to compute its roots� we compute the discriminant

�� � �S�	e�
S�	m�
� S��	e��m�
�S��	e�
 sin� 	 cos� 	

Since� according to equation ��
�� the quantity S�	e�
S�	m�
� S��	e��m�
 is positive� our equation
has two real roots

� � �S�	e��m�


S�	e�

� j cos 	 j
S�	e�
 sin 	

q
S�	e�
S�	m�
� S��	e��m�


The sign of the cosine of the angle between hC �� m�

�
i and hC� C �i is given by S�	e��m�

�

 which is

equal to

S�	e��m�

�

 � S�	e��m�
 � �S�	e�
 � �j cos 	 j

sin 	

q
S�	e�
S�	m�
� S��	e��m�


therefore only one of the two roots provides the correct sign and the solution is unique� as expected�

��
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Figure �� The ratio of the third to the last projective coordinates of the point M in the projec�

tive basis 	e�� e�� e�� e�� e	
 is equal to the cross�ratio of the four planes 	e�� e�� e�
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Geometric Stereo Invariant

Structure Rig Measures

Projective Fundamental Cross�ratios
Matrix

A�ne Collineation of Ratios of lengths
the plane at of parallel segments

in�nity

Similitude Images of the Angles� ratios of
absolute conic lengths of non�parallel

segments

Table �� Relations between the three strata and the geometric properties of the stereo rig�
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